Copied to
clipboard

G = C2.Dic32order 288 = 25·32

2nd central stem extension by C2 of Dic32

metabelian, supersoluble, monomial

Aliases: C3:C8:4Dic3, C2.4Dic32, C12.98(C4xS3), C3:1(C24:C4), (C3xC6).9C42, C6.4(C4xDic3), C6.1(C8:S3), C32:4(C8:C4), (C2xC12).294D6, C62.24(C2xC4), C4.21(S3xDic3), (C3xC6).4M4(2), C12.32(C2xDic3), (C6xC12).199C22, C2.1(C12.31D6), C22.8(C6.D6), (C3xC3:C8):7C4, (C2xC3:C8).8S3, (C2xC4).127S32, (C6xC3:C8).19C2, (C2xC6).26(C4xS3), (C3xC12).84(C2xC4), (C2xC3:Dic3).7C4, (C4xC3:Dic3).10C2, SmallGroup(288,203)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C2.Dic32
C1C3C32C3xC6C3xC12C6xC12C6xC3:C8 — C2.Dic32
C32C3xC6 — C2.Dic32
C1C2xC4

Generators and relations for C2.Dic32
 G = < a,b,c,d | a12=c3=1, b4=a6, d2=a9, bab-1=a5, ac=ca, ad=da, bc=cb, dbd-1=a6b, dcd-1=c-1 >

Subgroups: 266 in 95 conjugacy classes, 48 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, C2xC4, C2xC4, C32, Dic3, C12, C12, C2xC6, C2xC6, C42, C2xC8, C3xC6, C3xC6, C3:C8, C24, C2xDic3, C2xC12, C2xC12, C8:C4, C3:Dic3, C3xC12, C62, C2xC3:C8, C4xDic3, C2xC24, C3xC3:C8, C2xC3:Dic3, C6xC12, C24:C4, C6xC3:C8, C4xC3:Dic3, C2.Dic32
Quotients: C1, C2, C4, C22, S3, C2xC4, Dic3, D6, C42, M4(2), C4xS3, C2xDic3, C8:C4, S32, C8:S3, C4xDic3, S3xDic3, C6.D6, C24:C4, C12.31D6, Dic32, C2.Dic32

Smallest permutation representation of C2.Dic32
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 60 93 22 7 54 87 16)(2 53 94 15 8 59 88 21)(3 58 95 20 9 52 89 14)(4 51 96 13 10 57 90 19)(5 56 85 18 11 50 91 24)(6 49 86 23 12 55 92 17)(25 38 67 80 31 44 61 74)(26 43 68 73 32 37 62 79)(27 48 69 78 33 42 63 84)(28 41 70 83 34 47 64 77)(29 46 71 76 35 40 65 82)(30 39 72 81 36 45 66 75)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)(49 53 57)(50 54 58)(51 55 59)(52 56 60)(61 69 65)(62 70 66)(63 71 67)(64 72 68)(73 77 81)(74 78 82)(75 79 83)(76 80 84)(85 93 89)(86 94 90)(87 95 91)(88 96 92)
(1 77 10 74 7 83 4 80)(2 78 11 75 8 84 5 81)(3 79 12 76 9 73 6 82)(13 67 22 64 19 61 16 70)(14 68 23 65 20 62 17 71)(15 69 24 66 21 63 18 72)(25 60 34 57 31 54 28 51)(26 49 35 58 32 55 29 52)(27 50 36 59 33 56 30 53)(37 86 46 95 43 92 40 89)(38 87 47 96 44 93 41 90)(39 88 48 85 45 94 42 91)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,93,22,7,54,87,16)(2,53,94,15,8,59,88,21)(3,58,95,20,9,52,89,14)(4,51,96,13,10,57,90,19)(5,56,85,18,11,50,91,24)(6,49,86,23,12,55,92,17)(25,38,67,80,31,44,61,74)(26,43,68,73,32,37,62,79)(27,48,69,78,33,42,63,84)(28,41,70,83,34,47,64,77)(29,46,71,76,35,40,65,82)(30,39,72,81,36,45,66,75), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,93,89)(86,94,90)(87,95,91)(88,96,92), (1,77,10,74,7,83,4,80)(2,78,11,75,8,84,5,81)(3,79,12,76,9,73,6,82)(13,67,22,64,19,61,16,70)(14,68,23,65,20,62,17,71)(15,69,24,66,21,63,18,72)(25,60,34,57,31,54,28,51)(26,49,35,58,32,55,29,52)(27,50,36,59,33,56,30,53)(37,86,46,95,43,92,40,89)(38,87,47,96,44,93,41,90)(39,88,48,85,45,94,42,91)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,93,22,7,54,87,16)(2,53,94,15,8,59,88,21)(3,58,95,20,9,52,89,14)(4,51,96,13,10,57,90,19)(5,56,85,18,11,50,91,24)(6,49,86,23,12,55,92,17)(25,38,67,80,31,44,61,74)(26,43,68,73,32,37,62,79)(27,48,69,78,33,42,63,84)(28,41,70,83,34,47,64,77)(29,46,71,76,35,40,65,82)(30,39,72,81,36,45,66,75), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,93,89)(86,94,90)(87,95,91)(88,96,92), (1,77,10,74,7,83,4,80)(2,78,11,75,8,84,5,81)(3,79,12,76,9,73,6,82)(13,67,22,64,19,61,16,70)(14,68,23,65,20,62,17,71)(15,69,24,66,21,63,18,72)(25,60,34,57,31,54,28,51)(26,49,35,58,32,55,29,52)(27,50,36,59,33,56,30,53)(37,86,46,95,43,92,40,89)(38,87,47,96,44,93,41,90)(39,88,48,85,45,94,42,91) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,60,93,22,7,54,87,16),(2,53,94,15,8,59,88,21),(3,58,95,20,9,52,89,14),(4,51,96,13,10,57,90,19),(5,56,85,18,11,50,91,24),(6,49,86,23,12,55,92,17),(25,38,67,80,31,44,61,74),(26,43,68,73,32,37,62,79),(27,48,69,78,33,42,63,84),(28,41,70,83,34,47,64,77),(29,46,71,76,35,40,65,82),(30,39,72,81,36,45,66,75)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48),(49,53,57),(50,54,58),(51,55,59),(52,56,60),(61,69,65),(62,70,66),(63,71,67),(64,72,68),(73,77,81),(74,78,82),(75,79,83),(76,80,84),(85,93,89),(86,94,90),(87,95,91),(88,96,92)], [(1,77,10,74,7,83,4,80),(2,78,11,75,8,84,5,81),(3,79,12,76,9,73,6,82),(13,67,22,64,19,61,16,70),(14,68,23,65,20,62,17,71),(15,69,24,66,21,63,18,72),(25,60,34,57,31,54,28,51),(26,49,35,58,32,55,29,52),(27,50,36,59,33,56,30,53),(37,86,46,95,43,92,40,89),(38,87,47,96,44,93,41,90),(39,88,48,85,45,94,42,91)]])

60 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I8A···8H12A···12H12I12J12K12L24A···24P
order1222333444444446···66668···812···121212121224···24
size11112241111181818182···24446···62···244446···6

60 irreducible representations

dim1111122222224444
type++++-++-+
imageC1C2C2C4C4S3Dic3D6M4(2)C4xS3C4xS3C8:S3S32S3xDic3C6.D6C12.31D6
kernelC2.Dic32C6xC3:C8C4xC3:Dic3C3xC3:C8C2xC3:Dic3C2xC3:C8C3:C8C2xC12C3xC6C12C2xC6C6C2xC4C4C22C2
# reps12184242444161214

Matrix representation of C2.Dic32 in GL6(F73)

2700000
0270000
001000
000100
0000072
0000172
,
010000
4600000
0046000
0004600
000001
000010
,
100000
010000
00727200
001000
000010
000001
,
49710000
19240000
001000
00727200
000010
000001

G:=sub<GL(6,GF(73))| [27,0,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[0,46,0,0,0,0,1,0,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[49,19,0,0,0,0,71,24,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C2.Dic32 in GAP, Magma, Sage, TeX

C_2.{\rm Dic}_3^2
% in TeX

G:=Group("C2.Dic3^2");
// GroupNames label

G:=SmallGroup(288,203);
// by ID

G=gap.SmallGroup(288,203);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,253,92,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^3=1,b^4=a^6,d^2=a^9,b*a*b^-1=a^5,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<